

RESTORATION PROJECT

KERR-McGEE CHEMICAL CORP. SITE NATURAL RESOURCE DAMAGE ASSESSMENT

Injury assessment focused on benthic resources

- Direct injury
- Proxy for ecological service flows

All projects must create, restore, or enhance:

- Riverine habitat
- Coastal wetlands
- Underwater, intertidal, or shoreline habitat
- Passage for migratory fish

Alligator Creek Restoration **Regional Integration**

ALLIGATOR CREEK RESTORATION AND CONSERVATION PROJECT

Coastal tidal creek and wetland restoration:

- Approx. 80 acres
- Restore ~3900 ft of Alligator Creek; additional smaller order creeks
- Address invasive Phragmites australis
- Removal of historic fill material
- Berm adjacent to uplands to address sea-level rise

Recreational/Educational components:

- Access via walking and/or paddle trail, kayak launch
- Informational signage/kiosk and viewing platforms

Alligator Creek Restoration Detail Plan

↑

1,

FEET

SCALE 1:2,200

Map Produced By

The information depicted on impare for illustrative purposes a do not constitute definitive propor legal descriptions. This map does:

QUESTIONS/DISCUSSION

For further information, please contact:

Christine Pickens cpickens@uniqueplacesllc.com 225-931-2073

Jeffrey Fisher jeff@uniqueplacesllc.com 919-632-0161

SOIL & WATER QUALITY BENEFITS

Soil/Water Attribute	Current State (LCFRP 2017)	Potential Outcome At Site
Salinity	4 PSU (0-15) Driven by discharge and tidal exchange	Salinity will increase with tidal exchange
Nitrate + Nitrite	~500 µg/L Levels > 500 are problematic	Decrease due to anaerobic denitrification and biological assimilation; possible delay at Phragmites treatment area
Dissolved oxygen	6.7 mg/L (4.2-10.3) < 5 is problematic, hypoxia is mixed through column	Overall potential increase with nutrient assimilation and bacterial removal
Sediments	11 NTU (4-21) High values compared to estuary	Sedimentation driven by grain size (rel. large) and availability, could help offset SLR (~2 mm/yr)
Fecal Coliform	150-200 CFU/100mL Not safe > 200	Decrease due to sedimentation, improved benthic community, microbe uptake, UV exposure
Soil type & Condition	Chowan silt loam (poorly drained, flooded 6 mo/yr) groundwater recharged by precip. and lateral inflow	Short term: Redox conditions shift to sulfate-sulfide pair; Long term: increased organic matter, decreased bulk density