
We hold these truths to be sometimes hard to measure, that 
all phytoplankton are not created equal, that they are 
endowed by their phylogeny with certain limiting factors; 
that among these are Light, Nutrients and the pursuit of 
Carbon Dioxide. That to secure these resources, Organelles 
are instituted among eukaryotes, deriving their just 
powers from the availability of the ecosystem, that 
whenever any Form of Environment becomes destructive 
of these ends, it is the Right of the Phytoplankton to alter it 
or themselves or to perish, and to institute new 
Populations, laying its foundation on such principles and 
organizing its powers in such form, as to them shall seem 
most likely to affect their Growth and Reproduction.

-MEP
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Outline
1. Microcystis and Microcystins
2. Cape Fear River Blooms

-Why in 2009: Monitoring Data and 
Drivers
-Where and when do we detect 
Microcystis in the CFRB?  
-Can we rule out any plausible sources?
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Cape Fear River, NC



Reported Bloom Date Location

2009 September 24 Lock and Dam  1
2010 July 15 Lock and Dam1 Downstream to Acme 
2011 June 27 Minimal at Lock & Dam 1

July 7 NC 11 Bridge (Downstream of Lock and Dam 1)

July 11 Lock and Dam 1
July 14 Lock and Dam 2 downstream to Sutton Lake

Colonies found upstream at Tar Heel
Black River

July 20 Bloom extending downstream to Navassa

2012 May 10 Minimal bloom activity near Lock and Dam 1

July 3 Above Lock and Dam 1
July 11 Acme down to Indian Creek

Up Black River to Thoroughfare
July 18 Bloom beginning to break up: elevated flow



Jordan Lake



Jordan Lake: Nutrient Sensitive 
Waters

Cape Fear Basin Water Quality Management Plan, 2005



Microcystis Blooms: Initiation and 
Persistence
1. Determine distribution of Microcystis in the 
CFR 
2. Investigate historical monitoring data for 
patterns that may indicate a change in the 
river’s abiotic ecology
3. Rule out Jordan Lake as a plausible source if 
possible



Monitoring Data Retrieval and Analyses
 Flow and Nutrient 
North Carolina Division of Water Resources Ambient Monitoring System 
through the U.S. EPA’s STOrage and RETrieval (STORET) warehouse 
(http://www3.epa.gov/storet/)
 Temperature and Turbidity 
The Lower Cape Fear Monitoring Program (lcfrp.uncw.edu/riverdatabase/)
 Jordan Lake Discharge 
The US Army Corps of Engineers database:  
(http://epec.saw.usace.army.mil/jord.htm) 
 Regressions
 One way ANOVA and Tukey’s HSD
 Significance level: α = 0.05



Site 
Number

Location River Miles 
From Mouth

0 Mouth of the river 0

1 Lock and Dam 1 62

2 Elwell Ferry 70
3 Elizabethtown 85
4 Lock and Dam 2 90

5 Tar Heel Bridge 110

6 Lock and Dam 3 120

7 Cape Fear River at 
Lillington

150

8 CFR at NC 42 170
9 Haw River at Moncure 176

10 Jordan Lake 200
11 Deep River at 

Moncure
180

12 Haw River at Bynum 210



DNA Extraction, Amplification and Sequencing
 Bioline MyTaq Extract PCR Kit

 ITS (Otsuka et al., 1999)
 mcyB (Kaebernick et al., 2000)
 mcyD (Ouellette et al., 2006)

Date Locations Sequenced

2012 Lock and Dam 1
2015 Lock and Dam 1

CFR @ NC 42
Deep River
Jordan Lake



Monitoring Data Results and 
Analyses

Flow
Velocity

Nutrient Concentration and Loads
Temperature
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Time LD3 LD1 State
August 2007 629 713 Non-bloom
August 2002 701 776 Non-bloom

July 2002 699 802 Non-bloom
June 2002 846 874 Non-bloom
July 2011 946 951 Bloom
May 2002 882 968 Non-bloom
July 2007 1001 1017 Non-bloom
June 2008 982 1018 Non-bloom
July 2009 895 1043 Non-Bloom
May 2001 1056 1052 Non-bloom
June 2011 1097 1055 Bloom

August 2011 947 1086 Non-Bloom
September 2009 937 1117 Bloom

June 2007 1093 1191 Non-bloom
July 2010 1109 1205 Bloom

August 2010 1037 1233 Non-Bloom
June 2012 1029 1264 Bloom
July 2008 1398 1345 Non-bloom
July 2012 1235 1346 Bloom

June 2000 1131 1396 Non-bloom
August 2009 1383 1505 Non-Bloom

May 2007 1507 1591 Non-bloom
May 2011 1276 1615 Non-Bloom
May 2005 1478 1638 Non bloom
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Year Lock and Dam 1
% Below
Threshold

Highest reported flow 
during bloom + 1 s.d.

2400 cfs

Lock and Dam 3
% Below Threshold

2400 cfs

Lock and Dam 1
% Below Baseline
Geometric mean of flows 

during blooms

1080 cfs

Lock and Dam 3
% Below Baseline

1080 cfs
2002 97.4 97.1 83.7 84.2
2007 100.0 100.0 66.7 66.7
2008 67.3 67.3 27.5 27.5
2009 82.4 82.4 33.3 33.3
2010 83.0 83.0 49.0 49.0
2011 100 97.4 52.3 60.8
2012 78.4 78.4 30.7 30.7
2013 33.3 34.0 10.5 10.5
2014 70.6 70.6 16.3 16.3
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Flow and Velocity Summary
 Monthly summer averaged 2009-2012 flows and 

velocity were not significantly different than 2002 or 
2007

 Daily flow in 2009 was significantly higher than in 2007
(F(304,1)= 15.3271,  p<0.0001)

 Monthly averaged flow at Lock and Dam 1 and Lock 
and Dam 3 from 2000-2013 were not significantly 
different (F(110, 1)=0.4147, p=0.5209). 

 Proportion of days of low flow below both the 
threshold and baseline are identical between Lock 
and Dam 1 and Lock and Dam 3. 



Time Span 
Covered

July 91-
Sept 13

July 98-
Dec 13

July 98-
Dec 13

July 98-
Dec 13

July 98-
Nov 13

July 98-
Nov 13

April 92-
Sept 13

April 92-
Sept 13

Mar 92-
Sept 13

Ammonia -56% -35% -48% -30% -57% -9% -36% -65% -44%

DIN 44% 32% 36% 25% 39% 105%* 144% 44% 7%

TKN 87%* 42% 24% 46% 27% 37% 148% 160%* 102%*

Phosphate 89%* -24% -23% -30% -30% 21% -78% -20% 33%

TON 140%* 51% 37% 56% 41% 44% 172%* 72%* 145%*

TN 57%* 37% 34% 37% 34% 69%* 146%* 46%* 48%

TN:TP -90%* 61% 37% 22% 29% 14% 55% 70%* 0%

[Nutrient]

LD1
Near 
Kelly

Lock and 
Dam 1 
Upstream at 
Arcadia 

Below LD 
2 at RM 
70

Above 
LD2

RM 80 Upstream 
Smithfield

Lock and 
Dam 3

Fayetteville Lillington
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Nutrient 
Loads

Lock and Dam 1 
Near Kelly

Lock and Dam 3 Lillington

Time Span Covered July 91-Sept 13 April 92-Sept 13 March 92- Sept 13

Ammonia Load -81% -8% 54%

DIN Load -30% -35% -43%
TKN Load -12% -25% 28%
Phosphate Load -12% -70% -12%

TON Load 12% -15% -47%
TN Load -21% -30% -13%



 The only statistically significant nutrient 
concentration changes occurred well 
before the bloom period

 The watershed’s base nutrient sources 
haven’t appreciably changed in a way to 
support unprecedented blooms

Nutrient Summary
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2015 Cape Fear River Basin 
Study Results
Chlorophyll a

Population Mapping



Chlorophyll a 
(ug/L)

7 May, 
2015

30 June, 
2015 

18 July, 
2015

1 August, 
2015

2010: 
(NCDWQ, 
2011)

Haw River at Bynum 2.5 3.4 2.3 1.4 15.4

Jordan Lake 20.6 20.7 19.7 10.1

Haw River 
Downstream of 
Jordan Lake

4.2 36.3 22.8 18.5 17.0

Deep River at 
Moncure

1.5 5.3 3.3 2.1 2.9

CFR at NC 42 6.7 21.3 31.2 20.8 34.0

CFR at Lillington 1.6 7.1 2.4 1.6 2.1

Elizabethtown 1.4 9.0 13.3 42.9 18.0







JORDAN LAKE: 
DISCHARGE, NUTRIENTS 
AND PHYTOPLANKTON
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Long Term Monitoring: What has 
changed? 
 Flow? NO
 Nutrient concentration? Yes, but in the 1990s 
 Nutrient load? NO
 Temperature? NO
 Turbidity? NO

The abiotic ecology of the river has not 
changed in a way to support 

unprecedented bloom formation



Jordan Lake, the logical upstream 
source: is it plausible? 

Why here and now but not there or then?
 Discharge during “windows of opportunity” 
 No blooms following surges from Jordan Lake
 No blooms at Lock and Dam 3 or Buckhorn Dam
 Phytoplankton biomass sags between Jordan Lake and Lillington
 Outside control on phytoplankton biomass?
 ITS results support uncoupling of phytoplankton discharge from 

Jordan Lake and Microcystis blooms downstream



Microcystis in the Cape Fear River
 Definition and Dimensionality 
 Susceptibility and Exposure
 Potential and Opportunity

Jordan Lake has been ruled out as the 
source of Microcystis blooms



Many, Many Thanks
Advisor: Larry Cahoon

Committee: Michael Mallin 
and Patrick Erwin



Questions?



“How often have I said to you that when you have eliminated the 
impossible, whatever remains, however improbable, must be the truth?”

-Sir Arthur Conan Doyle



Developed, Industrial and Agricultural





Available Data: Flow
Parameter Frequency Time Period Locations

Flow Monthly for 
Summers: May-
September

2000-2013 Lock and Dam 1
Lock and Dam 3

Daily 1991-2015 Lock and Dam 1
Lock and Dam 3
Lillington



Parameter Frequency Time Period Locations

Velocity Daily Summers of 2002; 
2007-2014

Lock and Dam 1
Lillington
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Available Data: Nutrient Concentration
Site 
Number

Location DWQ 
monitoring 
station

1 Lock and Dam 1 Near 
Kelly

B8350000

2 Above Lock and Dam 
1 Near Arcadia

B8349000

3 Below Lock and Dam 2 
at River Marker 70

B8340130

4 Lock and Dam 2 B8339000
5 River Marker 80 Near 

Ruskin
B8306000

6 Upstream Smithfield 
Foods

B8302000

7 Lock and Dam 3 B8301000
8 Fayetteville B7600000
9 Lillington B6370000
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Velocity
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210.00 200.00 176.00 170.00 150.00 120.00 110.00 90.00 70.00 62.00
29-Sep 2.0 28.9 6.7 49.1 1.1 7.1 4.7
17-Sep 1.9 17.3 12.2 30.1 7.0 35.5 5.1
25-Aug 0.9 9.7 4.7 10.2 0.7 29.8
1-Aug 1.2 9.3 18.1 20.1 1.0 41.8 10.7
18-Jul 2.0 18.6 22.0 30.5 2.3 12.2
30-Jun 2.9 18.5 31.4 17.3 5.6 7.9
15-Jun 15.2 8.8 4.2 9.4 19.5
20-May 8.8 10.3 8.5 9.0 2.0
7-May 2.5 20.6 4.2 6.7 1.6 2.2 1.4
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• A sterilized hole punch was used to cut a sample (area = 28.27 mm2) from the glass fiber filters. 
DNA was extracted using Bioline MyTaq Extract PCR Kit following the manufacturer’s instructions. 

• Genomic DNA of cyanobacterial samples were initially examined by conventional PCR to 
demonstrate the presence of Microcystis aeruginosa using the specific PCR primer set targeting the 
ITS region (Otsuka et al., 1999). To establish cyanobacterial toxicity, primer sets designed for the MC 
synthetase genes, mcyB and mcyD, were used to detect MC+ Microcystis (Kaebernick et al., 2000; 
Ouellette et al., 2006).  

• Amplifications were carried out in 25 µL volumes in an Eppendorf Mastercycler. Reactions 
contained 1 µL of DNA extract, 1 µL primer, 12.5 µL ‘MyTaq HS Red Mix, 2x’ and 9.5 µL PCR water. 
The following cycling parameters were used: initial denaturation at 95°C for 3 minutes followed by 
thirty five cycles of denaturation at 95°C for 15 seconds, annealing at 50°C for 15 seconds and 
extension at 72°C for 20 seconds. Aliquots of PCR reaction products were electrophoresed in 1% 
agarose gels and captured digitally on a Biospectrum AC Imaging System. 



Cultures
Pure cultures of MC+ Microcystis LB 2385 were 
obtained from Eve Wright at the UNCW Marine 
Biotechnology Laboratory. Triplicate 150 mL of 
each medium BG-11 and B3N were inoculated 
with 8 mL LB 2385 and incubated at room 
temperature with access to natural light and 
dark patterns. These were used to extract DNA 
for PCR positive controls.
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