Evidence for Nutrient Factors in Cape Fear Algal Blooms

May 24, 2016 Bradley Saul UNC Biostatistics

Cape Fear River Partnership Meeting

- Chlorophyll-a at Lock 1
- Nutrient patterns above Lock 1
- Causal Question
- Preliminary Results

Chlorophyll at Lock 1

Chlorophyll-a at Lock 1 May-Oct, 1999-2012

- Uptick in NH3, NO3, P after Lock 3.
- Maybe: more NH3, N03, P → more chlorophyll

Relationship between Lock 1 Chlorophyll and upstream nutrients

Relationship between Lock 1 Chlorophyll and upstream nutrients

Correlation may increase after Lock 3

t --- nh3 --- no3 --- tkn --- p

What if...

We had an intervention that could set a nutrient level to X at an upstream location.

What effect would this have, on average, on downstream chlorophyll?

Causal Question

Causal Question (Mathematically)

Causal Question (Mathematically)

Statistical Issues & Limitations

- time- and space- varying confounding
- small sample size
- methods complicated
- methods not (yet) implemented in software

Average causal effect of $NO_3 > 1mg/L$ at Tar Heel on chlorophyll-*a* concentration at Lock 1:

1.88 (95% CI: 0.47, 3.3)

Preliminary Results: Interpretation Setting NO₃ at the sampling location 86km upstream (near Smithfield Foods) from below 1mg/L to above 1mg/L is expected to increase, on average, chlorophyll-*a* concentrations at Lock and Dam 1 by 3.5 times (1.88² $^{\circ}$ 3.5).

Good news

- surveillance data is useful beyond just monitoring
- <u>may</u> be some measureable effects with important policy and scientific implications

Limitations

- unable to make direct link to toxic blooms
- monthly sampling scheme does not give complete picture

Recommendations

- measure the outcome(s) of interest perhaps banking genetic samples
- augment regular surveillance with short-term, intensive sampling during bloom and non-bloom periods

Summary

Thank you

- Dr. Rebecca Benner (TNC)
- Dr. Mike Mallin (UNCW)
- Madi Polera (UNCW)

Causal inference with interference research group (UNC-Chapel Hill)

- Dr. Michael Hudgens
- Brian Barkley
- Sujatro Chakladar

Questions?

	<u>Cutpoint</u> (e.g $NH_3 < 0.1 \text{ vs} \ge 0.1$) Causal effect estimate (log_2 scale) 95% confidence interval		
NH ₃	<u>0.1</u>	<u>0.2</u>	<u>0.3</u>
	0.14	-0.15	-0.65
	(-1.44, 1.71)	(-1.75, 1.45)	(-2.81, 1.52)
NO ₃	<u>0.8</u>	<u>1.0</u>	<u>1.1</u>
	1.34	1.88	0.33
	(0.4, 2.29)	(0.47, 3.3)	(-1.11, 1.77)
TKN	<u>0.65</u>	<u>0.75</u>	<u>0.85</u>
	-0.29	0.74	0.71
	(-1.21, 0.63)	(-0.08, 1.57)	(-0.21, 1.63)
Ρ	<u>0.1</u> 0.29 (-2.48, 3.06)	<u>0.2</u> -0.12 (-1.42, 1.17)	

confidence intervals based on t distribution with 14 degrees of freedom (13 for P).

Extra slides